The Abel-Type Polynomial Identities
نویسندگان
چکیده
The Abel identity is (x + y) = n ∑ i=0 ( n i ) x(x − iz)i−1(y + iz)n−i, where x, y and z are real numbers. In this paper we deduce several polynomials expansions, referred to as Abel-type identities, by using Foata’s method, and also show some of their applications.
منابع مشابه
The Abel-Zeilberger Algorithm
We use both Abel’s lemma on summation by parts and Zeilberger’s algorithm to find recurrence relations for definite summations. The role of Abel’s lemma can be extended to the case of linear difference operators with polynomial coefficients. This approach can be used to verify and discover identities involving harmonic numbers and derangement numbers. As examples, we use the Abel-Zeilberger alg...
متن کاملOn an extension of Riordan array and its application in the construction of convolution-type and Abel-type identities
Using the basic fact that any formal power series over the real or complex number field can always be expressed in terms of given polynomials {pn(t)}, where pn(t) is of degree n, we extend the ordinary Riordan array (resp. Riordan group) to a generalized Riordan array (resp. generalized Riordan group) associated with {pn(t)}. As new application of the latter, a rather general Vandermonde-type c...
متن کاملBivariate affine Gončarov polynomials
Bivariate Gončarov polynomials are a basis of the solutions of the bivariate Gončarov Interpolation Problem in numerical analysis. A sequence of bivariate Gončarov polynomials is determined by a set of nodes Z = {(xi,j, yi,j) ∈ R2} and is an affine sequence if Z is an affine transformation of the lattice grid N2, i.e., (xi,j, yi,j) = A(i, j)T + (c1, c2) for some 2 × 2 matrix A and constants c1,...
متن کاملGeneralizations of Abel's and Hurwitz's identities
In 1826 N. Abel found a generalization of the binomial formula. In 1902 Abel’s theorem was further generalized by A. Hurwitz. In this paper we describe constructions that provide infinitely many identities each being a generalization of a Hurwitz’s identity. Moreover, we give combinatorial interpretations of all these identities as the forest volumes of certain directed graphs. Published by Els...
متن کاملSome new families of definite polynomials and the composition conjectures
The planar polynomial vector fields with a center at the origin can be written as an scalar differential equation, for example Abel equation. If the coefficients of an Abel equation satisfy the composition condition, then the Abel equation has a center at the origin. Also the composition condition is sufficient for vanishing the first order moments of the coefficients. The composition conjectur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 17 شماره
صفحات -
تاریخ انتشار 2010